PSTPIP2, a Protein Associated with Autoinflammatory Disease, Interacts with Inhibitory Enzymes SHIP1 and Csk.
نویسندگان
چکیده
Mutations in the adaptor protein PSTPIP2 are the cause of the autoinflammatory disease chronic multifocal osteomyelitis in mice. This disease closely resembles the human disorder chronic recurrent multifocal osteomyelitis, characterized by sterile inflammation of the bones and often associated with inflammation in other organs, such as the skin. The most critical process in the disease's development is the enhanced production of IL-1β. This excessive IL-1β is likely produced by neutrophils. In addition, the increased activity of macrophages, osteoclasts, and megakaryocytes has also been described. However, the molecular mechanism of how PSTPIP2 deficiency results in this phenotype is poorly understood. Part of the PSTPIP2 inhibitory function is mediated by protein tyrosine phosphatases from the proline-, glutamic acid-, serine- and threonine-rich (PEST) family, which are known to interact with the central part of this protein, but other regions of PSTPIP2 not required for PEST-family phosphatase binding were also shown to be indispensable for PSTPIP2 function. In this article, we show that PSTPIP2 binds the inhibitory enzymes Csk and SHIP1. The interaction with SHIP1 is of particular importance because it binds to the critical tyrosine residues at the C terminus of PSTPIP2, which is known to be crucial for its PEST-phosphatase-independent inhibitory effects in different cellular systems. We demonstrate that in neutrophils this region is important for the PSTPIP2-mediated suppression of IL-1β processing and that SHIP1 inhibition results in the enhancement of this processing. We also describe deregulated neutrophil response to multiple activators, including silica, Ab aggregates, and LPS, which is suggestive of a rather generalized hypersensitivity of these cells to various external stimulants.
منابع مشابه
PSTPIP2 deficiency in mice causes osteopenia and increased differentiation of multipotent myeloid precursors into osteoclasts.
Missense mutations that reduce or abrogate myeloid cell expression of the F-BAR domain protein, proline serine threonine phosphatase-interacting protein 2 (PSTPIP2), lead to autoinflammatory disease involving extramedullary hematopoiesis, skin and bone lesions. However, little is known about how PSTPIP2 regulates osteoclast development. Here we examined how PSTPIP2 deficiency causes osteopenia ...
متن کاملAntagonistic regulation of F-BAR protein assemblies controls actin polymerization during podosome formation.
FBP17, an F-BAR domain protein, has emerged as a crucial factor linking the plasma membrane to WASP-mediated actin polymerization. Although it is well established that FBP17 has a powerful self-polymerizing ability that promotes actin nucleation on membranes in vitro, knowledge of inhibitory factors that counteract this activity in vivo is limited. Here, we demonstrate that the assembly of FBP1...
متن کاملChronic recurrent multifocal osteomyelitis.
Chronic recurrent multifocal osteomyelitis is an autoinflammatory disorder characterized by bone pain and fever, a course of exacerbations and remissions, and a frequent association with other inflammatory conditions. Because its etiology is largely unknown, the diagnosis is still based on clinical criteria; treatment is empiric and not always successful. The diagnosis is supported by the prese...
متن کاملInflammasome-independent IL-1β mediates autoinflammatory disease in Pstpip2-deficient mice.
Chronic recurrent multifocal osteomyelitis (CRMO) is a human autoinflammatory disorder that primarily affects bone. Missense mutation (L98P) of proline-serine-threonine phosphatase-interacting protein 2 (Pstpip2) in mice leads to a disease that is phenotypically similar to CRMO called chronic multifocal osteomyelitis (cmo). Here we show that deficiency of IL-1RI in cmo mice resulted in a signif...
متن کاملBAR Proteins PSTPIP1/2 Regulate Podosome Dynamics and the Resorption Activity of Osteoclasts
Bone resorption in vertebrates relies on the ability of osteoclasts to assemble F-actin-rich podosomes that condense into podosomal belts, forming sealing zones. Sealing zones segregate bone-facing ruffled membranes from other membrane domains, and disassemble when osteoclasts migrate to new areas. How podosome/sealing zone dynamics is regulated remains unknown. We illustrate the essential role...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of immunology
دوره 195 7 شماره
صفحات -
تاریخ انتشار 2015